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Automated Visualization for
Flat and Hierarchical State Machines

Jasmine Lesner, Gabriel Hugh Elkaim

Abstract—Finite State Machines (FSMs) are essential in event-
driven control systems but become complex with more states
and events, which complicate debugging and updates. Traditional
tools for state diagrams are error-prone as they require manual
input or source code annotations. This paper introduces a tool
that automatically generates state diagrams from FSM code,
using naming conventions targeted by Abstract Syntax Tree
(AST) patterns with XSLT transformations. This tool fully
automates common coding practices and allows customization
for unique styles. The tool improves FSM design, debugging, and
maintenance by ensuring diagrams accurately reflect the code.

Index Terms—Finite State Machines (FSMs), Automated Vi-
sualization, State Diagram Generation, Source Code Analysis,
Abstract Syntax Tree (AST), XSLT Transformations, XPATH,
Event-Driven Control Systems, Debugging and Feature Integra-
tion, Coding Conventions, Software Tools for FSMs.

I. INTRODUCTION

F INITE inite State Machines (FSMs) are key in event-
driven systems but get complex with more states and

events, making debugging and integration harder. State di-
agrams are useful for understanding FSMs, but manually
creating and updating them is tedious and error-prone, often
leading to mismatches with the actual code.

A. Diagram Tools

Diagram tools like Graphviz [1] (also Mermaid.JS [2], Plan-
tUML [3], ...) require diagrams to be already described using
their visualization language. Tools like Doxygen [4] require
source code to be annotated for state diagram generation.
Unified Modeling Language [5] IDE tools like Enterprise
Architect [6] need manual intervention for FSM diagram
creation. No tool found can automatically generate diagrams
directly from source code.

B. Automatic Diagrams

FSM code typically involves a series of checks: current
state, last event, event parameters, and guard conditions. Im-
plementations can vary, using structures like switch-default or
if-elseif-else statements, and the sequence of checks can differ.
This variability poses a challenge: How can we automatically
generate accurate visual representations of FSMs from
their source code?

To address this, we developed a tool that extracts state
diagrams from source code. It uses naming conventions and
Abstract Syntax Tree (AST) patterns, employing a pipeline of
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XSLT [7]. This tool is fully automated when standard code
conventions are followed. For non-standard conventions, it
offers flexibility through modifiable XSLT templates. Users
can adapt the tool to alternative naming conventions either by
altering the XSLT directly or by preprocessing the source code.
When encountering unfamiliar variable names and coding
styles, the tool’s AST pattern recognition can be expanded
with new or updated XSLT templates. This approach ensures
that any enhancements in the diagram generation process are
immediately reflected across all diagrams, facilitating efficient
and accurate visualization of FSM implementations.

II. CODE PATTERNS

A. UCSC Mechatronics Robot Projects

UCSC Mechatronics students begin their robot projects with
code samples. These samples use CurrentState, nextState,
and ThisEvent to track states and events. Following this
convention this section shows code examples and their state
diagrams.

B. Code Pattern 1: Basic FSM

This pseudocode illustrates a simple FSM for a robot:
1 handle(ThisEvent) {
2 switch (CurrentState):
3 case moving_forward:
4 if (ThisEvent == FRONT_BUMPER_PRESSED):
5 nextState = stopped
6 break
7
8 case stopped:
9 if (ThisEvent == FRONT_BUMPER_RELEASED):

10 nextState = moving_forward
11 break
12 CurrentState = nextState
13 }

In the moving_forward state, if the front bumper is pressed,
the robot shifts to the stop state. Conversely, in the stopped

state, releasing the bumper returns it to moving_forward. The
state diagram for this behavior is:

moving_forward stopped

FRONT_BUMPER_PRESSED

FRONT_BUMPER_RELEASED

C. Code Pattern 2: Event Parameters

In the example above all bumper activations may require
some common action like a switch reset and for this reason it
can be useful to allow handling collections of related events
as groups. One way to achieve this is to split events into
ThisEvent.EventType and ThisEvent.EventParam as follows:
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1 handle(ThisEvent) { {
2 switch (CurrentState):
3 case moving_forward:
4 ...
5 if (ThisEvent.EventType == BUMPER_PRESSED):
6 if (ThisEvent.EventParam == FRONT_BUMPER)
7 nextState = stopped
8 else
9 ...

10 case stopped:
11 ...
12 CurrentState = nextState
13 }

The matching state diagram looks like this:

moving_forward stopped
(BUMPER_PRESSED)(FRONT_BUMPER)

D. Code Pattern 3: Transition Logic

Up until now, the behavior was only switching state based
on events the system has detected, but has not made any real
world reactions to them. To implement real actions as a result
of transitioning state, we would need to call upon functions
that move the robot, for example move_wheels(int speed)

which will move the wheels based on the speed.
1 handle(ThisEvent) {
2 switch (CurrentState):
3 case moving_forward:
4 ...
5 if (ThisEvent.EventType == BUMPER_PRESSED):
6 if (ThisEvent.EventParam == FRONT_BUMPER)
7 move_wheels(100)
8 nextState = stopped
9 else

10 ...
11 case stopped:
12 ...
13 CurrentState = nextState
14 }

The matching state diagram looks like this:

moving_forward stopped

(BUMPER_PRESSED)(FRONT_BUMPER)

move_wheels(100);

E. Code Pattern 4: Transition Guards

Before an FSM decides to switch states it may test whether
various conditions are true. These tests are called guards and
it can be useful to show these guards in state diagrams. For
example a robot may check before starting to move if it is
safe to do so, which is done in the function isSafeToMove().
If it is safe the robot can proceed to the moving_forward state,
else it must stay in the stopped state.

The code pattern for transition guards looks like this:
1 handle(ThisEvent) {
2 switch (CurrentState):
3 case moving_forward:
4 if (ThisEvent.EventType == bumper_pressed):
5 if (ThisEvent.EventParam == front_bumper):
6 nextState = stopped
7 ...
8
9 case stopped:

10 if (ThisEvent.EventType == BUMPER_RELEASED):
11 if (ThisEvent.EventParam == FRONT_BUMPER):
12 if (isSafeToMove()):
13 nextState = moving_foward
14 else:
15 nextState = stopped
16
17 CurrentState = nextState
18 }

The matching state diagram looks like this:

moving_forward

stopped

(BUMPER_PRESSED)(FRONT_BUMPER)

if(isSafeToMove())

(BUMPER_RELEASED)(FRONT_BUMPER)

TRUE

FALSE

F. Code Pattern 5: Entry / Exit Logic

When entering or leaving a state often there is common
logic performed and that logic is also useful to show in state
diagrams. For example we may want to always want the robot
to move forward when it enters the state moving_forward and
stop moving when it leaves the state moving_forward. Since
it would be repetitive to put this logic in every transition into
the state and out of the state, we use special events called
ES_ENTRY and ES_EXIT to always execute logic whenever a
state is entered and exited.

1 handle(ThisEvent) {
2 switch (CurrentState):
3 case moving_forward:
4 ...
5 if (ThisEvent.EventType == ES_ENTRY):
6 move_wheels(100)
7 break;
8 if (ThisEvent.EventType == ES_EXIT):
9 move_wheels(0)

10 break;
11 if (ThisEvent.EventType == BUMPER_PRESSED):
12 if (ThisEvent.EventParam==FRONT_BUMPER)
13 nextState = stopped
14 else
15 ...
16 case stopped:
17 ...
18 CurrentState = nextState
19 }

The matching state diagram looks like this:

moving_forward
/Entry: 

 move_wheels(100);
/Exit: 

 move_wheels(0);

stopped
/Entry: 
/Exit: 

(BUMPER_PRESSED)(FRONT_BUMPER)

G. Code Pattern 6: Hierarchical State Machines

Hierarchical State Machines (HSMs) simplify complex sys-
tems by nesting smaller FSMs within larger ones. For example,
in a robot, a main moving state can include a nested state
machine for specific movements. This allows the robot to
manage detailed behaviors within the moving state, while
the top-level state machine focuses on broader states. Events
are processed at the appropriate level, ensuring efficient and
organized behavior management.

Top level FSM code pattern example:
1 handle(ThisEvent) {
2 switch (CurrentState):
3 case moving_forward:
4 RunHSM_Top_Moving(ThisEvent)
5 if (ThisEvent.EventType == ES_EXIT):
6 stop_wheels();
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7 if (ThisEvent.EventType == BUMPER_PRESSED):
8 if (ThisEvent.EventParam==FRONT_BUMPER)
9 nextState = stopped

10 else
11 ...
12 case stopped:
13 ...
14 CurrentState = nextState
15 }

Top level state diagram:

moving

 RunHSM_Top_Moving
/Entry: 

/Exit: 

 stop_wheels()

stopped
/Entry: 
/Exit: 

(BUMPER_PRESSED)(FRONT_BUMPER)

Code for nested FSM:
1 RunHSM_Top_Moving(ThisEvent):
2 switch (CurrentState):
3 case moving_right:
4 if (ThisEvent.EventType == ES_ENTRY):
5 set_timer(60)
6 move_wheels_right(100)
7 if (ThisEvent.EventType == TIMER_DONE):
8 nextState = moving_left
9 break;

10
11 case moving_left:
12 if (ThisEvent.EventType == ES_ENTRY):
13 set_timer(60)
14 move_wheels_right(100)
15 if (ThisEvent.EventType == TIMER_DONE):
16 nextState = moving_left
17 break;
18
19 CurrentState = nextState
20 }

Diagram for nested FSM:

moving_right
/Entry: 

 set_timer(60);
 move_wheels_right(100);
/Exit: 

moving_left
/Entry: 

 set_timer(60);
 move_wheels_left(100);
/Exit: 

TIMER_DONE

TIMER_DONE

III. METHOD

Our diagram tool operates in three stages:
1) The first stage reads source code and generates an

abstract syntax tree AST
2) The second stage analyzes and annotates the AST with

tags relevant for a state diagram.
3) The third stage uses the AST tags to generate a diagram

description which is then rendered visually in various
formats (PNG, SVG, PDF)

A. Stage One: AST Generation

1) Supported Inputs: We designed our tool to interpret
FSMs in an embedded C variant for PIC32MX microcon-
trollers, a cost-effective 32-bit MCU family with versatile
memory and integrated peripherals. This technology is used in
UCSC classrooms [8] for developing robotic applications with
Microchip’s MPLAB X IDE [9] and MPLAB XC Compilers
[10].

1 find "$src_path" -type f -name ’*.c’ -print0 \
2 | xargs -0 egrep -l nextState \
3 | while read f ; do
4 ff="‘basename \"${f}\"‘"
5 b="‘dirname \"${f}\"‘"
6 (
7 cd "$b" \
8 && echo "amalgamating ’${f}’" \
9 && cat "${ff}" \

10 | dos2unix \
11 | perl -p "${epath}" \
12 | ( egrep -avi ’ˆ#define ’ || true ) \
13 > "${ff}.undef" \
14 && echo "
15 cpp
16 -I\"${course_include_path}\"
17 -I\"${pic32mx_include_path}\" \
18 $ilist $iconfig2 -I’${b}’ -I. ’${ff}.undef’ \
19 " \
20 | bash \
21 | perl -pe ’
22 s{zz0912819zz}{}g;
23 ’ \
24 | dos2unix \
25 > "${ff}.cp5" \
26 && rm -f "${ff}.undef"
27 ) 2>&1
28 done
29
30 find "$src_path" -name ’*.c.cp5’ \
31 | while read f ; do
32 echo "visualizing ’$f’"
33 (
34 sx=saxonb-xslt
35 cat "$f" \
36 | tr -d ’\r’ \
37 | ( egrep -avi ’ˆ[[:blank:]]*$|ˆ#|va_list|__attribute__’ || true ) \
38 | perl -pe’s{__extension__}{ }g; s{__}{}g; ’ \
39 | python3 c_ast_xml.py \
40 | tee "${f}.xml" \
41 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00005_identity.xml \
42 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00100_declutter_attributes.xml \
43 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00200_add_bLine_eLine.xml \
44 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00300_add_CurrentStateTest.xml \
45 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00300_add_EventParamTest.xml \
46 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00300_add_EventTypeTest.xml \
47 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00300_add_NextStateLabel.xml \
48 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00400_add_CascadeElements.xml \
49 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00500_add_CascadeLabel.xml \
50 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00550_add_EventLabel.xml \
51 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00560_add_Guard_Element.xml \
52 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00570_add_Guard_Attributes.xml \
53 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00600_add_onEntry_onExit.xml \
54 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00600_add_onTransition2.xml \
55 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00620_drop_unwanted_code.xml \
56 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00800_gv_digraph4.xml \
57 | perl -pe ’s/ && / &amp;&amp; /g;
58 s/ < / &lt; /g;
59 s/ > / &gt; /g;
60 s/ <= / &lt;= /g;
61 s/ >= / &gt;= /g;
62 ’ \
63 > "${f}.gv"
64
65 dot -Tpng "${f}.gv" -o "${f}.png"
66 dot -Tpdf "${f}.gv" -o "${f}.pdf"
67 dot -Tsvg "${f}.gv" -o "${f}.svg"
68 ) 2>&1
69 done

Fig. 1. The two principal commands that power our tool. The first command
(spanning lines 1-28) prepares C code for parsing. During preparation some
macros are protected from expansion (line 11) and after cpp this protection
is removed (lines 21-23). The second command (spanning lines 30-69) builds
the AST (line 39), runs the annotation pipeline (lines 41-55) and generates
diagrams (lines 56-67). See section III for details.

2) Keywords and Constructs: The embedded C variant for
PIC32MX microcontrollers uses C language elements such as
va_list, __attribute__, and __extension__, which are not
recognized by some parsers like PycParser [11]. These ele-
ments unnecessary for our diagram generation, are eliminated
using regular expressions. Additionally, superfluous elements
such as empty lines and comments are removed.

3) Macro Encoding: C programs use macros, e.g.,
#include "stdio.h" and #define FRONT_BUMPER 0x42.
These are processed by the C Preprocessor (CPP) [12],
which enables macro functions, file inclusion, and conditional
compilation. The #include macros need merging, and
#define macros replace text in the code. In diagrams,
it’s beneficial to display macro names like FRONT_BUMPER

instead of their expanded forms (e.g., 0x42). Therefore, our
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tool selectively suppresses some macro expansions during
CPP processing. This is achieved by protecting them from
expansion, and later removing this protection. The protection
is added (figure 1 line 11) by an ad hoc script the generation
of which is shown in figure 2.

1 epath="$src_path"/encode.pl
2
3 find \
4 "${src_path}" \
5 "${course_include_path}" \
6 -type f \( -name ’*.h’ -o -name ’*.hpp’ -o -name ’*.c’ \) \
7 | tr "\n" "\0" \
8 | xargs -0 cat \
9 | dos2unix \

10 | ( egrep -ai ’ˆ#define’ || true ) \
11 | perl -pe ’s/#define (\w)(\w+)[ \(].*$/s{\\b$1$2\\b}{$1zz0912819zz$2}g; #

encode123 /g;’ \
12 | ( grep encode123 || true ) \
13 | perl -pe ’s/ # encode123//g;’ \
14 | sort | uniq \
15 > "${epath}"

Fig. 2. Generation of ad hoc encoding script to protect macros. Line 11 in
figure 1 adds the macro protection and lines 21-23 remove it. Section III-A3
has details.

4) Apply CPP: After filtering out unsupported keywords
and encoding macros, we use CPP to expand #include files.
Post-CPP, the macro protections are removed, reverting them
to their original names.

5) Construct AST: A Python script processes the CPP
output, creating an XML with two sections: code and ast.
The code section lists the source code with line numbers,
useful for diagram annotations. The ast section contains the
corresponding AST, as generated by PycParser.

B. Stage Two: AST Annotation
In this stage, we annotate the AST using a series of XSLT

steps, facilitating independent inspection and development of
each annotation phase.

1) XML Normalize: Initially, we normalize the XML AST
to enhance readability and track changes more efficiently. This
involves removing unnecessary whitespace and maintaining
the integrity of all XML elements and attributes. Indentation
is used for clear visualization of the AST’s tree structure.

2) AST Declutter: We simplify the AST by removing
redundant elements and attributes generated by PycParser that
are not required for state diagrams. Attributes like quals,
align, storage, funcspec, and line (when null) are omitted,
along with any empty attributes, using targeted XSLT rules.
This decluttering focuses on creating a cleaner, more navigable
AST.

3) bLine / eLine: Each AST element is assigned bLine and
eLine attributes, marking the start and end line numbers in
the original C code, respectively. This facilitates linking AST
elements to their corresponding source code lines, essential
for illustrating logic in state diagrams.

4) CurrentStateTest: For case and default elements
within switch statements checking CurrentState, we add
a CurrentStateTest attribute, reflecting the state name rep-
resented by that case. This annotation is extendable to
if-elseif-else patterns if encountered.

5) EventParamTest: We tag AST elements within
conditional statements involving EventParam with an
EventParamTest attribute, indicating the specific EventParam

being tested.

6) EventTypeTest: Similar to EventParamTest, condi-
tional statements involving EventType are tagged with an
EventTypeTest attribute, specifying the EventType under con-
sideration.

7) NextStateLabel: Elements indicating state changes
(which have class attribute set to Assignment and operation
attribute set to =, and nextState on the left side) receive a
NextStateLabel attribute, denoting the new state as defined
in the assignment’s right-hand value.

8) CascadeElements: Case and Default elements follow-
ing uninterrupted Case elements (without a Break) gain
CascadeElement children, representing each cascading case
value.

9) CascadeLabel: A CascadeLabel attribute is formed by
merging the current case value with all CascadeElement

values, separated by the word or. This label collectively
represents switch branches that cascade together.

10) EventLabel: Elements with NextStateLabel are also
tagged with an EventLabel, combining relevant EventType

and EventParam values.
11) GuardElements: If statements leading to state tran-

sitions but not checking Event attributes are marked with a
guard child element, encapsulating the condition’s code. This
highlights the triggering logic in diagrams.

12) GuardLabel: To uniquely identify guards, we use
CurrentStateTest and NextStateLabel attributes, with the
guard’s line number serving as an identifier. The EventLabel

differentiates true and false conditions.
13) onEntry / onExit: onEntry and onExit elements are

added, populated with code executed upon entering and exiting
states, respectively.

14) onTransition: The onTransition element, filled with
code executed during state transitions, is added. This informa-
tion is displayed alongside event labels in the state diagram.

15) Code Declutter: We remove code lines that are re-
dundant or non-essential, such as references to nextState,
makeTransition, and ThisEvent.EventType. This is because
their actions are already represented diagrammatically.

C. Stage Three: Diagram Generation

Once AST annotations are applied they are used to generate
a description of a diagram in the GraphViz [1] diagram
description language. This is done in four steps by XSLT in
figure 3:

1) Step: Diagram Setup: Output format is set to plain text,
suitable for Graphviz format and the initial starting state for
the diagram is identified.

2) Step: Loop over States: We loop through AST elements
representing different states, excluding the initial state and
guard conditions. These are formatted with matching styles
and labels including onEntry and onExit code blocks.

3) Step: Loop over Guards: We loop through guard con-
ditions associated with state transitions, adding them to the
digraph with their specific style.

4) Step: Loop over Transitions: Last we loop through state
transitions adding them to the diagram description with their
onTransition code blocks.
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1 <xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
2 <xsl:output method="text"/>
3 <xsl:template match="/">
4 <xsl:variable name="InitState" select="//ext[@class=’Decl’ and @name=’

CurrentState’]/init/@name"/>
5 <xsl:text>
6 digraph fsm {
7 </xsl:text>
8 <xsl:value-of select="$InitState"/>
9 <xsl:text>[shape = "point", color = "black",style="filled",width=.1,forcelabels

=false];
10
11 // states
12 node [shape=plaintext]
13 </xsl:text>
14 <xsl:for-each select="
15 //*[
16 @CurrentStateTest
17 and not(@CurrentStateTest = ’’)
18 and not(@CurrentStateTest = $InitState)
19 and not(guard)
20 ]">
21 <xsl:text>
22 </xsl:text>
23 <xsl:value-of select="@CurrentStateTest"/>
24 <xsl:text><![CDATA[ [label=<<TABLE BORDER="1" CELLBORDER="0" CELLSPACING="0" style

="rounded">
25 <TR>
26 <TD BORDER="1" SIDES="B">]]></xsl:text>
27 <xsl:value-of select="@CurrentStateTest"/>
28 <xsl:text><![CDATA[</TD>
29 </TR>]]></xsl:text>
30 <xsl:if test="stmts[@class=’Assignment’ and rvalue/args/exprs/@name=’

ThisEvent’]/lvalue[@name=’ThisEvent’]">
31 <xsl:text><![CDATA[
32 <TR>
33 <TD ALIGN="LEFT">]]></xsl:text>
34 <xsl:value-of select="stmts[@class=’Assignment’]/rvalue/name/@name"/>
35 <xsl:text><![CDATA[</TD>
36 </TR>
37 ]]></xsl:text>
38 </xsl:if>
39 <xsl:text><![CDATA[
40 <TR>
41 <TD ALIGN="LEFT"><B>/Entry: </B></TD>
42 </TR>]]></xsl:text>
43 <xsl:for-each select="onEntry/line">
44 <xsl:text><![CDATA[
45 <TR><TD ALIGN="LEFT">]]></xsl:text>
46 <!-- <xsl:value-of select="normalize-space(.)"/> -->
47 <xsl:value-of select="."/>
48 <xsl:text><![CDATA[</TD></TR>]]></xsl:text>
49 </xsl:for-each>
50 <xsl:text><![CDATA[
51 <TR>
52 <TD ALIGN="LEFT"><B>/Exit: </B></TD>
53 </TR>
54 ]]></xsl:text>
55 <xsl:for-each select="onExit/line">
56 <xsl:text><![CDATA[<TR><TD ALIGN="LEFT">]]></xsl:text>
57 <!-- <xsl:value-of select="normalize-space(.)"/> -->
58 <xsl:value-of select="."/>

59 <xsl:text><![CDATA[</TD></TR>
60 ]]></xsl:text>
61 </xsl:for-each>
62 <xsl:text><![CDATA[</TABLE>>];
63 ]]></xsl:text>
64 </xsl:for-each>
65 <xsl:text>
66 // guards
67 </xsl:text>
68
69 <xsl:for-each select="
70 //*[
71 @CurrentStateTest
72 and not(@CurrentStateTest = ’’)
73 and not(@CurrentStateTest = ’InitPSubState’)
74 and guard
75 ]">
76 <xsl:text>
77 </xsl:text>
78 <xsl:value-of select="@CurrentStateTest"/>
79 <xsl:text><![CDATA[ [shape=point, xlabel="]]></xsl:text>
80
81 <xsl:for-each select="guard/line">
82 <!-- <xsl:value-of select="normalize-space(.)"/> -->
83 <xsl:value-of select="."/>
84 <xsl:text>
85 </xsl:text>
86 </xsl:for-each>
87 <xsl:text><![CDATA["];
88 ]]></xsl:text>
89 </xsl:for-each>
90 <xsl:text>
91
92 // transitions
93 </xsl:text>
94
95 <xsl:for-each select="//*[ @NextStateLabel ]">
96 <xsl:value-of select="ancestor::*[@CurrentStateTest][1]/@CurrentStateTest"/

>
97 <xsl:text> -> </xsl:text>
98 <xsl:value-of select="@NextStateLabel"/>
99 <xsl:text><![CDATA[[label=<<TABLE BORDER="0" CELLBORDER="0">

100 <TR><TD BORDER="1" SIDES="B">]]></xsl:text>
101 <xsl:value-of select="@EventLabel"/>
102 <xsl:text><![CDATA[</TD></TR>]]></xsl:text>
103 <xsl:for-each select="onTransition/line">
104 <xsl:text><![CDATA[
105 <TR><TD ALIGN="LEFT">]]></xsl:text>
106 <xsl:value-of select="."/>
107 <xsl:text><![CDATA[</TD></TR>]]></xsl:text>
108 </xsl:for-each>
109 <xsl:text><![CDATA[
110 </TABLE>>];
111 ]]></xsl:text>
112 </xsl:for-each>
113 <xsl:text>
114 }</xsl:text>
115 </xsl:template>
116
117 </xsl:stylesheet>

Fig. 3. This XSLT is applied to an annotated AST to generate a state diagram in a Graphviz format. Initial State Setup (Lines 1-10): Structures output
as a DOT graph (digraph fsm), applying specific visual formatting for nodes and transitions. State Processing (Lines 11-65): Iterates over AST elements
representing states, formatting each as a graph node with possible entry and exit action details. Guard Conditions (Lines 66-91): Processes and visually
represents guard conditions associated with states. Transitions Handling (Lines 92-177): Manages state transitions, including current and next states, triggering
events, and transition actions. See section III-C for details.

IV. RESULTS

A. Input & Output Samples

Figure 6 displays the state diagram generated from the FSM
code in figure 5. This FSM, representing the primary level in
a hierarchical state machine (HSM), controls a wheeled robot
modeled after a cockroach (shown in figure 4). It exhibits
behaviors like moving in darkness and freezing in light, with
an added periodic ’jig dance’. While each top-level HSM state
contains a nested FSM, these are omitted for brevity.

Figure 8 presents the FSM derived from the code in figure
7, which is a lower-level FSM in a multi-tiered HSM for a
competition robot. This complex FSM includes labels like
if(barrierCount < BARRIER_COUNT) and if ((fieldSide

== FIELD_LEFT)... demonstrating our tool’s capability to
manage even chained state transition guard conditions. The di-
agram also exemplifies the labeling of state diagram elements
with corresponding source code.

B. Tool Benchmarks
The tool underwent benchmarking on WSL2 Ubuntu Linux

on top of a Windows 10 Pro host, powered by an Intel
Core i7-8850H CPU. This setup features six physical cores,
with twelve hyper-threaded virtual cores, operating between
800MHz and 4200MHz.

TABLE I
BENCHMARK RESULTS

Run Percent of CPU Elapsed Time

Run 1 821% 1:21.22
Run 2 808% 1:17.26
Run 3 819% 1:35.38
Run 4 816% 1:16.48

Table IV-B lists the outcomes of four benchmark runs, each
time processing identical code files to generate thirteen state
diagrams. Two of these diagrams are shown in figures 6 and
8 generated from code in figures 5 and 7. The tests were
conducted on a laptop plugged into AC power, using Windows
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Fig. 4. A wheeled robot from UCSC’s Mechatronics’s Roach Lab. It is
controlled by the code in figure 5. Figure 6 shows the automatically generated
FSM state diagram for this robot. This robot is programmed in an embedded
C variant for PIC32MX microcontrollers, a cost-effective 32-bit MCU family
with versatile memory and integrated peripherals. See section III-A1 for
details.

10 Pro default power profile settings. During the tests, three
virtual cores were occupied with background tasks, leaving
nine cores primarily for our benchmarking.

The benchmark results indicate that:

1) Diagram Generation Time: It takes less than ten
seconds to generate one state diagram, with a 20-25%
time variation between the fastest and slowest runs. This
discrepancy is likely due to thermal throttling affecting
CPU performance.

2) Elapsed Time vs. CPU Usage: Contrary to expecta-
tions, higher CPU usage did not correlate with shorter
elapsed times. The longest processing times coincide
with the highest CPU usages, suggesting that thermal
throttling is slowing down the cores, increasing the
overall time despite seemingly higher CPU % usage.

3) Core Utilization Efficiency: The tool uses eight of the
nine available virtual cores, leaving limited scope for
further parallelization on our test system. While servers
with more cores might benefit from concurrent diagram
generation, our users (UCSC students) are unlikely to
see significant performance improvements on standard
laptops or PCs from additional parallel processing.

V. DISCUSSION

A. Abstract Syntax Trees (ASTs)

Initially, we employed regular expression patterns [13] for
diagram generation data extraction. This method fell short as it
treated source code linearly, struggling with nested structures
like switch-default and if-elseif-else constructs.

To overcome these limitations, we shifted to using a C
parser and ASTs which represent the hierarchical nature of
source code, enabling us to use XPATH [14], a pattern
language designed for tree structures.

1 ES_Event RunTemplateHSM(ES_Event ThisEvent) {
2 uint8_t makeTransition = FALSE; TemplateHSMState_t nextState; ES_Tattle();
3
4 switch (CurrentState) {
5 case InitPState:
6 if (ThisEvent.EventType == ES_INIT) {
7 InitLightSubHSM(); InitDarkSubHSM(); InitJigSubHSM(); ES_Timer_SetTimer(

↪→ JIG_TIMER, JIG_TIME); nextState = InDark; makeTransition = TRUE;
↪→ ThisEvent.EventType = ES_NO_EVENT;

8 }
9 break;

10
11 case InLight:
12 ThisEvent = RunLightSubHSM(ThisEvent);
13 switch (ThisEvent.EventType) {
14 case ES_ENTRY: ES_Timer_InitTimer(JIG_TIMER, JIG_TIME); break;
15 case ES_EXIT: ES_Timer_StopTimer(JIG_TIMER); break;
16 case LIGHT_TO_DARK: nextState = InDark; makeTransition = TRUE; ThisEvent.

↪→ EventType = ES_NO_EVENT; break;
17 case ES_TIMEOUT: nextState = Jig; makeTransition = TRUE; ThisEvent.EventType =

↪→ ES_NO_EVENT; ES_Timer_SetTimer(JIG_SPIN_TIMER, JIG_SPIN_TIME);
↪→ break;

18 }
19 break;
20
21 case InDark:
22 ThisEvent = RunDarkSubHSM(ThisEvent);
23 switch (ThisEvent.EventType) {
24 case ES_ENTRY: StopMotors(); break;
25 case DARK_TO_LIGHT: nextState = InLight; makeTransition = TRUE; ThisEvent.

↪→ EventType = ES_NO_EVENT; break;
26 }
27 break;
28
29 case Jig:
30 ThisEvent = RunJigSubHSM(ThisEvent);
31 switch (ThisEvent.EventType) {
32 case JIG_FINISHED: nextState = InLight; makeTransition = TRUE; ThisEvent.

↪→ EventType = ES_NO_EVENT; break;
33 case LIGHT_TO_DARK: nextState = InDark; makeTransition = TRUE; ThisEvent.

↪→ EventType = ES_NO_EVENT; break;
34 }
35 break;
36 }
37
38 if (makeTransition == TRUE) {
39 RunTemplateHSM(EXIT_EVENT); CurrentState = nextState; RunTemplateHSM(

↪→ ENTRY_EVENT);
40 }
41
42 ES_Tail(); return ThisEvent;
43 }

Fig. 5. Diagrams are automatically generated from source code that looks
like this. This code shows the primary level in a Hierarchical State Machine
(HSM) and controls a wheeled robot modeled after a cockroach (shown in
figure 4). It exhibits behaviors like moving in darkness and freezing in light,
with an added periodic ’jig dance’.

To see why this approach is more effective than regular
expressions for parsing nested code patterns consider this
XPATH used in our tool:

ancestor::*[@CurrentStateTest][1]/@CurrentStateTest

This XPATH works as follows:
• ancestor::*[@CurrentStateTest][1]: It locates the

nearest ancestor element with a
• CurrentStateTest attribute in the AST hierarchy. The

process involves:
– ancestor::* to select all ancestor elements.
– [@CurrentStateTest] to filter ancestors with the

CurrentStateTest attribute.
– [1] to pick the first element from this filtered set.

• /@CurrentStateTest: Retrieves the CurrentStateTest

attribute’s value from the selected ancestor.

B. Annotation Pipeline

Our second prototype attempted to directly convert ASTs
into state diagrams. This was acceptable for simple diagrams
however it soon proved overly complex and unmanageable,
when adding features like event parameters, transition logic,
and guards.

To address this, we developed a third prototype featuring
an annotation pipeline. This pipeline breaks down the diagram
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InDark
▶ RunDarkSubHSM
/Entry: 
            StopMotors();
/Exit: 

ES_INIT

            InitLightSubHSM();

            InitDarkSubHSM();

            InitJigSubHSM();

            ES_Timer_SetTimer(JIG_TIMER, JIG_TIME);

InLight
▶ RunLightSubHSM
/Entry: 
            ES_Timer_InitTimer(JIG_TIMER, JIG_TIME);
/Exit: 
            ES_Timer_StopTimer(JIG_TIMER);

LIGHT_TO_DARK

Jig
▶ RunJigSubHSM
/Entry: 
/Exit: 

ES_TIMEOUT

            ES_Timer_SetTimer(JIG_SPIN_TIMER, JIG_SPIN_TIME);

DARK_TO_LIGHT

JIG_FINISHED

LIGHT_TO_DARK

Fig. 6. What our generated state diagrams look like. This one was automati-
cally generated from the FSM source code in figure 5 and shows the top level
in a Hierarchical State Machine (HSM). Each top-level HSM state (InDark,
InLight, Jig) contains an internal FSM but these are omitted for brevity.

generation process into distinct steps, each handling a specific
type of annotation. This modular approach allows for easier
debugging and verification of each step. After the annotations
are complete, the AST is ready for a straightforward transfor-
mation into a state diagram using a single XSLT step. This
final step uses the annotated AST and three loops to fill out a
diagram description template as shown in figure 3.

At present, our annotation pipeline comprises fifteen XSLT
steps (lines 41-55 in figure 1). Additional steps can be incor-
porated as needed for new diagram features or to handle more
AST patterns. An example of one such early annotation step
is illustrated in Figure 10. This step determines the diagram
label associated with the current state and adds it as an attribute
named CurrentStateTest.

Figure 10 includes an XPATH pattern that targets
block_items AST elements based on specific criteria:

• @class=’Case’ or @class=’Default’: This selects
block_items nodes either with a class attribute value
of Case or Default.

• ../../../block_items[@class=’Switch’]

/cond[@class=’ID’ and @name=’CurrentState’]:
The process here is:

– ../../..: Ascends three levels in the AST from the
current block_items node.

– /block_items[@class=’Switch’]: Selects
block_items nodes that are children of the
node reached and have a class attribute of Switch.

– /cond[@class=’ID’ and @name=’CurrentState’]:
Then selects cond nodes that have a class attribute
of ID and a name attribute of CurrentState.

• and not(@CurrentStateTest): Excludes nodes already
tagged with a CurrentStateTest attribute.

This XPATH pattern selects block_items nodes classified
as either Case or Default, but only if they are hierarchi-
cally related to block_items nodes of class Switch with a

child cond node meeting specific criteria (class=’ID’ and
name=’CurrentState’).

These nodes must not already have a CurrentStateTest

attribute. This ensures no overwriting if CurrentStateTest is
already computed in another step.

The outcome of this XSLT is tagging all branches of switch
statements conditional on the variable CurrentState with a
CurrentStateTest attribute.

If the current state is determined differently, like through
if-elseif-else constructs instead of a switch statement, another
template can handle that scenario. Hence, the downstream
logic needing the current state label does not depend on the
specific logic computing the CurrentStateTest attribute.

C. Limitations and Challenges

Some limitations and challenges associated with our tool
include:

a) CPP Includes: In Section III-A4, we discuss the
application of CPP to generate a C code stream independent
of other files. The success of CPP hinges on accessing all
necessary project and library include files. Although our tool
includes standard files, version mismatches with users’ code
may necessitate manual updates to the CPP launch command.
To facilitate this, our tool outputs each CPP command, allow-
ing users to modify the CPP launch command as needed if
the default setting fails.

b) AST Understanding: The AST’s complexity com-
pared to the original source code is evident in Figure 12,
which depicts the AST for the first branch of a CurrentState
switch statement from Figure 11. The AST’s verbosity and
size—often expanding a few hundred lines of code into
thousands—pose significant navigational challenges.

c) Annotation Development: Understanding the effects
of annotation steps requires examining the AST before and
after each step by using AST captures:

• State Tracking: AST captures facilitate tracking the state
of the AST at key stages in the annotation process. This
is essential for understanding the impacts of changes on
the AST’s structure.

• Debugging and Verification: These captures also aid in
debugging and verifying transformations or annotations
applied to the AST while they are being developed and
tested.

Figure 13 demonstrates the use of tee commands for captur-
ing AST states around the s00400_add_CascadeElements.xml

annotation step. Differences can be highlighted using diff -u

before.xml after.xml or an IDE’s equivalent function.

D. Features Supported

1) Automatic Labeling:
• Current, Next State, and Transition Event Labels:

Automatically labels states and transitions, enhancing the
clarity of state progressions and events triggering these
transitions.

• Initial State Elements: Clearly marks the starting state
of each FSM, providing an immediate understanding of
the FSM’s entry point.
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1 ES_Event RunHSM_Top_Orienting(ES_Event ThisEvent) {
2
3 uint8_t makeTransition=FALSE; HSM_Top_OrientingState_t nextState; ES_Event postEvent

↪→ ; ES_Tattle(); uint8_t nextFromTrack; uint8_t nextFromTape;
4
5 switch (CurrentState) {
6 case InitPSubState:
7 if (ThisEvent.EventType==ES_INIT) {
8 wallHit=FALSE; barrierCount=0; barrierTrack=BARRIER_NULL; barrierTape=

↪→ BARRIER_NULL; fieldSide=FIELD_UNKNOWN; centerTimerTime=
↪→ TIMER_TICKS_CENTER_BUMP;

9 turningTimerTime=DCMOTOR_TIME_TURN_90DEG; nextState=Find; makeTransition=TRUE;
↪→ ThisEvent.EventType=ES_NO_EVENT;

10 }
11 break;
12
13 case Find:
14 switch (ThisEvent.EventType) {
15 case ES_ENTRY: DCMotor_Drive(DCMOTOR_DRIVE_SPEED, FORWARDS); break;
16 case ES_EXIT: DCMotor_Stop(); break;
17 case BUMPER_PRESSED: wallHit=TRUE; centerTimerTime=TIMER_TICKS_CENTER_BUMP;

↪→ nextState=Align; makeTransition=TRUE; ThisEvent.EventType=ES_NO_EVENT;
↪→ break;

18 case TRACK_ENTERED: barrierTrack=barrierCount; centerTimerTime=
↪→ TIMER_TICKS_CENTER_TRACK; nextState=Center; makeTransition=TRUE;
↪→ ThisEvent.EventType=ES_NO_EVENT; break;

19 case TAPE_ENTERED: barrierTape=barrierCount; centerTimerTime=
↪→ TIMER_TICKS_CENTER_TAPE; nextState=Center; makeTransition=TRUE;
↪→ ThisEvent.EventType=ES_NO_EVENT; break;

20 }
21 break;
22
23 case Align:
24 switch (ThisEvent.EventType) {
25 case ES_ENTRY: ES_Timer_InitTimer(TIMER_TOP_ORIENTING, TIMER_TICKS_ALIGN);

↪→ DCMotor_Turn(DCMOTOR_DRIVE_SPEED, FORWARDS, LEFT); break;
26 case ES_EXIT: DCMotor_Stop(); break;
27 case ES_TIMEOUT:
28 if (ThisEvent.EventParam==TIMER_TOP_ORIENTING) {
29 nextState=Center; makeTransition=TRUE; ThisEvent.EventType=ES_NO_EVENT;
30 }
31 break;
32 }
33 break;
34
35 case Center:
36 switch (ThisEvent.EventType) {
37 case ES_ENTRY:
38 ES_Timer_InitTimer(TIMER_TOP_ORIENTING, centerTimerTime); DCMotor_Drive(

↪→ DCMOTOR_DRIVE_SPEED, BACKWARDS);
39 if (wallHit==TRUE) barrierCount++; break;
40 case ES_EXIT: DCMotor_Stop(); break;
41 case ES_TIMEOUT:
42 if (ThisEvent.EventParam==TIMER_TOP_ORIENTING) {
43 if (barrierCount < BARRIER_COUNT) {
44 nextState=Rotate;
45 } else {
46 if (barrierTrack==(BARRIER_COUNT - 1)) {
47 nextFromTrack=0;
48 } else if (barrierTrack==BARRIER_NULL) {
49 nextFromTrack=BARRIER_NULL;
50 } else { nextFromTrack=barrierTrack + 1; }
51 if (barrierTape==(BARRIER_COUNT - 1)) {
52 nextFromTape=0;
53 } else if (barrierTape==BARRIER_NULL) {
54 nextFromTape=BARRIER_NULL;
55 } else { nextFromTape=barrierTape + 1; }
56 if (barrierTrack==BARRIER_NULL) {
57 fieldSide=FIELD_UNKNOWN;
58 } else if (barrierTape==BARRIER_NULL) {
59 fieldSide=FIELD_UNKNOWABLE;
60 } else if (nextFromTrack==barrierTape) {
61 fieldSide=FIELD_LEFT;
62 } else if (nextFromTape==barrierTrack) {
63 fieldSide=FIELD_RIGHT;
64 }
65 if ((fieldSide==FIELD_LEFT) || (fieldSide==FIELD_RIGHT) || (fieldSide==

↪→ FIELD_UNKNOWABLE)) {

66 nextState=Turning_Beacon;
67 turningTimerTime=DCMOTOR_TIME_TURN_90DEG * (barrierTrack + 1);
68 } else {
69 nextState=Turning_OtherSide; turningTimerTime=DCMOTOR_TIME_TURN_90DEG

↪→ * (barrierTape + 1); wallHit=FALSE; barrierCount=0;
↪→ barrierTrack=BARRIER_NULL; barrierTape=BARRIER_NULL;
↪→ fieldSide=FIELD_UNKNOWN; centerTimerTime=
↪→ TIMER_TICKS_CENTER_BUMP; turningTimerTime=
↪→ DCMOTOR_TIME_TURN_90DEG;

70 }
71 }
72 makeTransition=TRUE; ThisEvent.EventType=ES_NO_EVENT;
73 }
74 break;
75 }
76 break;
77
78 case Rotate:
79 switch (ThisEvent.EventType) {
80 case ES_ENTRY: ES_Timer_InitTimer(TIMER_TOP_ORIENTING, TIMER_TICKS_ROTATE);

↪→ DCMotor_TankTurn(DCMOTOR_TURN_SPEED, RIGHT); break;
81 case ES_EXIT: DCMotor_Stop(); break;
82 case ES_TIMEOUT:
83 if (ThisEvent.EventParam==TIMER_TOP_ORIENTING) {
84 nextState=Find; makeTransition=TRUE; ThisEvent.EventType=ES_NO_EVENT;
85 }
86 break;
87 }
88 break;
89
90 case Turning_Beacon:
91 switch (ThisEvent.EventType) {
92 case ES_ENTRY: ES_Timer_InitTimer(TIMER_TOP_ORIENTING, turningTimerTime);

↪→ DCMotor_TankTurn(DCMOTOR_TURN_SPEED, RIGHT); break;
93 case ES_EXIT: DCMotor_Stop(); break;
94 case ES_TIMEOUT:
95 if (ThisEvent.EventParam==TIMER_TOP_ORIENTING) {
96 postEvent.EventType=ORIENTED; postEvent.EventParam=fieldSide; PostHSM_Top(

↪→ postEvent); nextState=InitPSubState; makeTransition=TRUE;
↪→ ThisEvent.EventType=ES_NO_EVENT;

97 }
98 break;
99 }

100 break;
101
102 case Turning_OtherSide:
103 switch (ThisEvent.EventType) {
104 case ES_ENTRY: ES_Timer_InitTimer(TIMER_TOP_ORIENTING, turningTimerTime);

↪→ DCMotor_TankTurn(DCMOTOR_TURN_SPEED, RIGHT); break;
105 case ES_EXIT: DCMotor_Stop(); break;
106 case ES_TIMEOUT:
107 if (ThisEvent.EventParam==TIMER_TOP_ORIENTING) {
108 nextState=Driving_OtherSide; makeTransition=TRUE; ThisEvent.EventType=

↪→ ES_NO_EVENT;
109 }
110 break;
111 }
112 break;
113
114 case Driving_OtherSide:
115 switch (ThisEvent.EventType) {
116 case ES_ENTRY: DCMotor_Drive(DCMOTOR_DRIVE_SPEED, FORWARDS); break;
117 case ES_EXIT: DCMotor_Stop(); break;
118 case TAPE_EXITED: nextState=Find; makeTransition=TRUE; ThisEvent.EventType=

↪→ ES_NO_EVENT; break;
119 }
120 break;
121 }
122
123 if (makeTransition==TRUE) {
124 RunHSM_Top_Orienting(EXIT_EVENT); CurrentState=nextState; RunHSM_Top_Orienting(

↪→ ENTRY_EVENT);
125 }
126
127 ES_Tail(); return ThisEvent;
128 }

Fig. 7. An example of a more complex FSM. Shown is the lower-level FSM in a multi-tiered HSM. The HSM has several of these FSMs but only this one
is shown for brevity. This particular FSM implements the orienting behavior for a UCSC competition [8] robot which reacts to various sensor inputs and
internal events. The code here uses switch-case logic to decide the current state (initialization, finding, aligning, centering, rotating, and driving) and then the
actions within each state include motor operations and transitions to other states based on sensor feedback and time-based events.

• Switch Cascade Labels: Simplifies diagrams by merging
labels when multiple conditions in a switch statement
lead to the same next state, aiding in reducing diagram
complexity.

• Event Parameter Labels: Adds context to events by
displaying associated parameters, such as timer IDs in
timeout events, facilitating a deeper understanding of
event-specific behaviors.

• Entry/Exit Logic Labels: Marks repetitive logic exe-
cuted upon entering or exiting states, crucial for under-
standing state-dependent behaviors.

• Transition Logic Labels: Indicates logic executed during

transitions, essential for tracking changes in behavior in
response to events.

• Macro Expansion Suppression: Represents constants
(e.g., TURN_RIGHT_ENUM instead of 0x45) with their de-
fined labels, improving readability and comprehension.

2) Advanced Features:

• Transition Guards: Displays conditions that control
state transitions, instrumental for visualizing decision-
making within the FSM.

• Hierarchical State Machines: Supports nested state
machines, providing abstraction and modularity, and en-
capsulating complex logic within states.
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Find
/Entry: 
            DCMotor_Drive(DCMOTOR_DRIVE_SPEED, FORWARDS);
/Exit: 
            DCMotor_Stop();

ES_INIT

            wallHit = FALSE;

            barrierCount = 0;

            barrierTrack = BARRIER_NULL;

            barrierTape = BARRIER_NULL;

            fieldSide = FIELD_UNKNOWN;

            centerTimerTime = TIMER_TICKS_CENTER_BUMP;

            turningTimerTime = DCMOTOR_TIME_TURN_90DEG;

Align
/Entry: 
            ES_Timer_InitTimer(TIMER_TOP_ORIENTING,
                    TIMER_TICKS_ALIGN);
            DCMotor_Turn(DCMOTOR_DRIVE_SPEED, FORWARDS, LEFT);
/Exit: 
            DCMotor_Stop();

BUMPER_PRESSED

            wallHit = TRUE;

            centerTimerTime = TIMER_TICKS_CENTER_BUMP;

Center
/Entry: 
            ES_Timer_InitTimer(TIMER_TOP_ORIENTING,
                    centerTimerTime);
            DCMotor_Drive(DCMOTOR_DRIVE_SPEED, BACKWARDS);
            if (wallHit == TRUE) {
                barrierCount++;
            }
/Exit: 
            DCMotor_Stop();

TRACK_ENTERED

            barrierTrack = barrierCount;

            centerTimerTime = TIMER_TICKS_CENTER_TRACK;

TAPE_ENTERED

            barrierTape = barrierCount;

            centerTimerTime = TIMER_TICKS_CENTER_TAPE;

(ES_TIMEOUT)(TIMER_TOP_ORIENTING)

                if (barrierCount < BARRIER_COUNT) {

(ES_TIMEOUT)(TIMER_TOP_ORIENTING)

Rotate
/Entry: 
            ES_Timer_InitTimer(TIMER_TOP_ORIENTING,
                    TIMER_TICKS_ROTATE);
            DCMotor_TankTurn(DCMOTOR_TURN_SPEED, RIGHT);
/Exit: 
            DCMotor_Stop();

(ES_TIMEOUT)(TIMER_TOP_ORIENTING)

Turning_Beacon
/Entry: 
            ES_Timer_InitTimer(TIMER_TOP_ORIENTING,
                    turningTimerTime);
            DCMotor_TankTurn(DCMOTOR_TURN_SPEED, RIGHT);
/Exit: 
            DCMotor_Stop();

(ES_TIMEOUT)(TIMER_TOP_ORIENTING)

                postEvent.EventType = ORIENTED;

                postEvent.EventParam = fieldSide;

                PostHSM_Top(postEvent);

Turning_OtherSide
/Entry: 
            ES_Timer_InitTimer(TIMER_TOP_ORIENTING,
                    turningTimerTime);
            DCMotor_TankTurn(DCMOTOR_TURN_SPEED, RIGHT);
/Exit: 
            DCMotor_Stop();

Driving_OtherSide
/Entry: 
            DCMotor_Drive(DCMOTOR_DRIVE_SPEED, FORWARDS);
/Exit: 
            DCMotor_Stop();

(ES_TIMEOUT)(TIMER_TOP_ORIENTING)

TAPE_EXITED

TRUE

                    if ((fieldSide == FIELD_LEFT) ||
                            (fieldSide == FIELD_RIGHT) ||

                            (fieldSide == FIELD_UNKNOWABLE)) {

FALSE

                    if (barrierTrack == (BARRIER_COUNT - 1)) {

                        nextFromTrack = 0;

                    } else if (barrierTrack == BARRIER_NULL) {

                        nextFromTrack = BARRIER_NULL;

                    } else {

                        nextFromTrack = barrierTrack + 1;

                    }

                    if (barrierTape == (BARRIER_COUNT - 1)) {

                        nextFromTape = 0;

                    } else if (barrierTape == BARRIER_NULL) {

                        nextFromTape = BARRIER_NULL;

                    } else {

                        nextFromTape = barrierTape + 1;

                    }

                    if (barrierTrack == BARRIER_NULL) {

                        fieldSide = FIELD_UNKNOWN;

                    } else if (barrierTape == BARRIER_NULL) {

                        fieldSide = FIELD_UNKNOWABLE;

                    } else if (nextFromTrack == barrierTape) {

                        fieldSide = FIELD_LEFT;

                    } else if (nextFromTape == barrierTrack) {

                        fieldSide = FIELD_RIGHT;

                    }

TRUE

                        turningTimerTime = DCMOTOR_TIME_TURN_90DEG * (barrierTrack + 1);

FALSE

                        turningTimerTime = DCMOTOR_TIME_TURN_90DEG * (barrierTape + 1);

                        wallHit = FALSE;

                        barrierCount = 0;

                        barrierTrack = BARRIER_NULL;

                        barrierTape = BARRIER_NULL;

                        fieldSide = FIELD_UNKNOWN;

                        centerTimerTime = TIMER_TICKS_CENTER_BUMP;

                        turningTimerTime = DCMOTOR_TIME_TURN_90DEG;

Fig. 8. An example of a more sophisticated FSM state diagram which is based on code in figure 7. This FSM implements the orienting behavior for a
UCSC competition [8] robot which reacts to various sensor inputs and internal events. The FSM has states like InitPSubState, Find, Align, Center,
Rotate, Turning_Beacon, Turning_OtherSide, and Driving_OtherSide. Each state encompasses specific motor control actions upon entry and
exit. State transitions are dictated by events and conditions, including sensor inputs and timers, managing the system’s behavior through sequential stages and
responses to external stimuli. This diagram demonstrates our tool’s ability analyze the complex code from figure 7. Our tool automatically labels state transitions
with their matching code and handles nested guard conditions in sequences such as if(barrierCount<... followed by if((fieldSide==....

3) Ease of Use:

• Automatic Discovery of FSMs: Identifies and processes
FSMs in *.c files automatically, streamlining the diagram
generation process for entire projects. No need to gener-
ate diagrams one at a time.

• Isolated Installation and Runtime: Uses Linux contain-
ers for a single-command, isolated setup and operation,
ensuring compatibility across different systems including
WSL2 for Windows and Docker Desktop for MacOS.

E. Future Work

To foster collaborative development and wider adoption,
the complete tool is available under an Open Source license
(AGPLv3) and can be accessed free of charge at [15].

Possible future work includes:

• More Code Patterns: As UCSC students use our tool,
supporting a wider range of FSM code patterns is our
primary focus.

• More Inputs and Outputs: Extending support to FSMs
in Java, Python, JavaScript, etc. Generation of diagrams



10

800 810 820 830
70

80

90

100

CPU Usage %

E
la

ps
ed

Ti
m

e
(s

ec
on

ds
)

Elapsed Time vs. CPU Usage

Fig. 9. Each point is a single run of our benchmark which scans two project
folders and generates 13 state diagrams. Contrary to expectations, higher CPU
usage % did not correlate with shorter elapsed times. The longest processing
times coincide with the highest CPU usages, suggesting that CPU thermal
throttling is slowing down the cores, increasing the overall time despite
seemingly higher CPU % usage. This is based on benchmark results reported
in section IV-B.

1 <xsl:template match="
2 block_items[
3 (@class=’Case’
4 or @class=’Default’)
5 and (
6 ../../..
7 /block_items[@class=’Switch’]
8 /cond[@class=’ID’ and @name=’CurrentState’]
9 )

10 and not(@CurrentStateTest)
11 ]">
12 <xsl:copy>
13 <xsl:apply-templates select="@*"/>
14 <xsl:attribute name="CurrentStateTest">
15 <xsl:value-of select="./expr[@class=’ID’]/@name"/>
16 </xsl:attribute>
17 <xsl:apply-templates select="node()"/>
18 </xsl:copy>
19 </xsl:template>

Fig. 10. Demonstration of how current state label is tracked by tagging
branches of switch statements conditional on the variable CurrentState
with a CurrentStateTest attribute. This attribute serves as a reference
for the label of the current switch branch, enabling subsequent pipeline logic
to reference this label without recalculating it. The approach is designed
to be adaptable, allowing for different templates if the current state is
determined differently, such as through if-elseif-else construct instead of a
switch statement.

not just using GraphViz but also using Mermaid.js, Plan-
tUML, etc. Introduction of new diagram types such as
Harel Statecharts and Activity Diagrams.

• More Intelligence: Analysis to identify FSM program-
ming errors, like states with incomplete transitions or
potential deadlocks, where the FSM could freeze without
any viable transitions.

VI. CONCLUSION

We have described a new tool for automatically creating
visualizations of FSMs, which is particularly useful in software
engineering and robotics. The tool simplifies the creation of
state diagrams, which is usually complex and error-prone,
especially for intricate FSMs. It uses naming conventions, AST

1 switch (CurrentState) {
2 case InitPSubState:
3 if (ThisEvent.EventType == ES_INIT)
4 {
5 ES_Timer_StopTimer(TIMER_TOP_RELOADING);
6 trackCrossings = 0;
7 nextState = Turning;
8 makeTransition = TRUE;
9 ThisEvent.EventType = ES_NO_EVENT;

10 }
11 break;
12 ...

Fig. 11. Sample C code snippet showing just the first case in a switch
statement which is shorter and simpler than its AST version in figure 12

1 <block_items class="Switch" line="602">
2 <cond class="ID" line="602" name="CurrentState"/>
3 <stmt class="Compound" line="602">
4 <block_items class="Case" line="603">
5 <expr class="ID" line="603" name="InitPSubState"/>
6 <stmts class="If" line="604">
7 <cond class="BinaryOp" line="604" op="==">
8 <left class="StructRef" line="604" type=".">
9 <name class="ID" line="604" name="ThisEvent"/>

10 <field class="ID" line="604" name="EventType"/>
11 </left>
12 <right class="ID" line="604" name="ES_INIT"/>
13 </cond>
14 <iftrue class="Compound" line="605">
15 <block_items class="FuncCall" line="606">
16 <name class="ID" line="606" name="ES_Timer_StopTimer"/>
17 <args class="ExprList" line="606">
18 <exprs class="ID" line="606" name="TIMER_TOP_RELOADING"/>
19 </args>
20 </block_items>
21 <block_items class="Assignment" line="607" op="=">
22 <lvalue class="ID" line="607" name="trackCrossings"/>
23 <rvalue class="Constant" line="607" type="int" value="0"/>
24 </block_items>
25 <block_items class="Assignment" line="608" op="=">
26 <lvalue class="ID" line="608" name="nextState"/>
27 <rvalue class="ID" line="608" name="Turning"/>
28 </block_items>
29 <block_items class="Assignment" line="609" op="=">
30 <lvalue class="ID" line="609" name="makeTransition"/>
31 <rvalue class="ID" line="609" name="TRUE"/>
32 </block_items>
33 <block_items class="Assignment" line="610" op="=">
34 <lvalue class="StructRef" line="610" type=".">
35 <name class="ID" line="610" name="ThisEvent"/>
36 <field class="ID" line="610" name="EventType"/>
37 </lvalue>
38 <rvalue class="ID" line="610" name="ES_NO_EVENT"/>
39 </block_items>
40 </iftrue>
41 </stmts>
42 <stmts class="Break" line="612"/>
43 </block_items>
44 ...

Fig. 12. Based on the C code in figure 11, this AST represents the same
information as the original C code but an AST has many lines and is harder
to read.

patterns, and XSLT transformations to generate accurate FSM
visuals from the source code, accommodating various coding
patterns. This not only saves time and reduces errors but
also helps in understanding FSM structures, proving especially
beneficial in educational settings like UCSC’s mechatronics
courses [8].

The tool’s ability to handle different FSM code patterns,
including hierarchical state machines and transition guards,
shows its versatility. It is being used in education to help
students learn and implement FSMs in robotics. Although
it currently works in a specific programming environment
and with certain naming conventions, there’s potential for
expanding its capabilities to more programming languages,
diagram types, and FSM verification diagnostics.

In summary, this tool marks a significant advancement in
automating state diagram generation, improving the design
and debugging of FSMs in various applications, especially in
education.
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1 find "$src_path" -name ’*.c.cp5’ \
2 | while read f ; do
3 echo "visualizing ’$f’"
4 (
5 sx=saxonb-xslt
6 cat "$f" \
7 | tr -d ’\r’ \
8 | ( egrep -avi ’ˆ[[:blank:]]*$|ˆ#|va_list|__attribute__’ || true ) \
9 | perl -pe’s{__extension__}{ }g; s{__}{}g; ’ \

10 | python3 c_ast_xml.py \
11 | tee "${f}.xml" \
12 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00005_identity.xml \
13 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00100_declutter_attributes.xml \
14 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00200_add_bLine_eLine.xml \
15 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00300_add_CurrentStateTest.xml \
16 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00300_add_EventParamTest.xml \
17 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00300_add_EventTypeTest.xml \
18 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00300_add_NextStateLabel.xml \
19 | tee before.xml \
20 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00400_add_CascadeElements.xml \
21 | tee after.xml \
22 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00500_add_CascadeLabel.xml \
23 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00550_add_EventLabel.xml \
24 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00560_add_Guard_Element.xml \
25 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00570_add_Guard_Attributes.xml \
26 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00600_add_onEntry_onExit.xml \
27 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00600_add_onTransition2.xml \
28 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00620_drop_unwanted_code.xml \
29 | $sx -s:/dev/stdin -o:/dev/stdout -xsl:s00800_gv_digraph4.xml \
30 | perl -pe ’s/ && / &amp;&amp; /g;
31 s/ < / &lt; /g;
32 s/ > / &gt; /g;
33 s/ <= / &lt;= /g;
34 s/ >= / &gt;= /g;
35 ’ \
36 > "${f}.gv"
37
38 dot -Tpng "${f}.gv" -o "${f}.png"
39 dot -Tpdf "${f}.gv" -o "${f}.pdf"
40 dot -Tsvg "${f}.gv" -o "${f}.svg"
41
42 ) 2>&1
43 done

Fig. 13. Lines 19 and 21 show how annotation AST captures are done with
the tee command by extracting the state of the AST before and after the
s00400_add_CascadeElements.xml template.
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APPENDIX A
SETUP AND USAGE GUIDE

The State Machine Visualizer (SMV) is a tool for visualiz-
ing the structure and behavior of state machines in your code.
Follow these steps to set up and use the tool.

Step-by-Step Instructions

STEP 1: Download the Script: First, download the
smv.bash script using the following command:

1 wget https://raw.githubusercontent.com/jlesner/smv2/main/smv.bash

STEP 2: Inspect the Script:

• Inspect Changes: Review the smv.bash script to under-
stand the changes it will make. It installs necessary tools
like git, curl, and podman if they are not already present
on your system.

• Password Prompt: The script uses sudo apt-get, which
might prompt you for your password to install missing
tools.

• First-Time Setup: On its initial run, smv.bash will
download the latest version of the State Machine Visual-
izer and install required dependencies.

• System Requirements: The script is designed for Linux
systems with the apt package manager, such as Ubuntu.
Windows users can use Ubuntu/WSL2, and MacOS users
might need to run Ubuntu in a VM.

• Containerization: To create a suitable environment,
smv.bash builds a Linux container, installing additional
dependencies (Python, Java, etc.) and executes the SMV
code within this container. Note that this container re-
quires approximately 900MB of space.

• Cleanup: At the end of the script, instructions are
provided to remove the installations made by smv.bash.
These instructions are for when you are done using SMV
and want to remove it. Leaving things installed allows
smv.bash to run faster.

STEP 3: Run the Script: To run the State Machine Visual-
izer, use the following command, replacing ${path_to_code}
with the path to your state machine files:

1 bash smv.bash ${path_to_code}

STEP 4: View the Results: After running the script, you can
find the files it generated using this command:

1 find ${path_to_code} -name ’*.cp5*’
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